

Final Round Schedule

Time Allotted Analysis Task Submit Break

09:30 – 09:40 Task 1

09:40 – 10:50 Task 1

10:50 – 10:55 Task 1

20 minutes Break

11:15 – 11:25 Task 2

11:35 – 12:35 Task 2

12:45 – 12:50 Task 2

END OF CHALLENGE

Task 1 – Point-of-Sale System (70 minutes)

POS systems have replaced most traditional cash registers due to their ability to connect to

the retailer’s main database system. Having all data stored and accessible within one

system makes daily operations more efficient and more profitable.

Write a program that simulates a POS system. This system has a Log-In Screen and a Main

Menu as shown below:

Log In Screen

Option Description

Cashier Log In
A cashier must be logged-in to proceed to the Main Menu.

(Details of the registered cashiers is shown in Table 2)

Exit Terminates the program.

Main Menu

Option Description

Enter new transaction
Allows the cashier to enter the items that the client wants to buy.

(A list of the stock items is shown in Table 1)

Issue Receipt
This option displays the receipt of the last transaction carried out.

(A sample is shown in Figure 1)

Display Stock List
This option displays the list of items that a client can buy.

(A list of the stock items is shown in Table 1)

Cashier Sign Out
Allows a logged-in cashier to sign out and return to the Log-In Screen.

(Details of the current registered cashiers is shown in Table 2)

Stock List

Figure 1: Sample Generated Receipt

Items Price

Printer €67.99

Monitor €138.00

Keyboard €12.50

Graphics Card €114.99

Soundbar €249.00

Hard Disk €66.95

Headset €17.55

Smartwatch €135.00

Camcorder €329.00

Drone €449.99

Table 1

Registered Cashiers
Name the class containing the

main method RunApp1

Submit your program in a folder

called TASK1_INDEXNUM

e.g. TASK1_0025 or TASK1_0004

Username Password

borg.steve B o r g8 7 m ax

zammit.rita R i tPo p S i n g !

agius.john T o yo taB e S t

vella.carlos.02 R o c k ! n ! R o l l

mallia.amy $Gaga$Lady$

Table 2

Assessment Rubric

Program

Functionality

User Friendly

Interface

Code

Efficiency

Proper use of

In-line Text
(Comments)

Use of Proper

Conventions
(Camel Case, meaningful

variable names etc.)

Name of

Folder & Class/es

User

Input

Suitable

Prompts / Messages

displayed

Options Validation
(Login Screen, Main Menu

& New Transaction)

Functionality

Validation
(Issuing of Receipt)

Ignoring Case

Sensitivity
(when searching for

username & item)

Proper Use of

Data Structure

(such as Arrays)

Searching of

Records
(Stock & Cashiers)

Arithmetic

Calculations

(Subtotal, VAT & Total)

Generating

Receipt Number
(8-digit Number)

Display Receipt
(simulating a real receipt

as much as possible)

Display list of

items in stock
(including formatting)

Other Features
(not listed in the task)

Maximum Score: 34 +

2 for every extra feature

0 – Not Satisfactorily | 1- Partly Satisfactorily | 2- Entirely Satisfactorily

Program Rules:

▪ A cashier must be logged in to be able to record transactions and issue receipts.

To log in, the cashier must enter the username and password. A proper message is

displayed when the username and/or password are not correct.

▪ The username IS NOT case sensitive, and the password IS case sensitive; follow

hints below.

▪ If there is a transaction already recorded, the program asks the cashier whether to

record another transaction or not. The new transaction will overwrite the previous

one.

▪ While recording a transaction:

o a proper message should be displayed when an item is not in stock list.

o the cashier must enter character X as an item to stop the transaction.

▪ A receipt is issued only if a transaction exists. A proper message is displayed if there

are no transactions.

▪ The receipt should resemble a real receipt as much as possible, as the sample in

Figure 1:

o the receipt number is an 8-digit random generated number.

o ideally the date when the receipt was issued is shown; follow hints below.

o The Subtotal, VAT (at 18%) and Total are automatically calculated and shown on

receipt.

▪ To sign out, the cashier must enter the cashier’s password. A proper message is

displayed if password in not correct.

Hints:

1. To ignore case sensitivity of the username (String), the user’s input can be changed into its uppercase

equivalent. For example, if the user enters username ‘borg.joe’, it can be changed to ‘BORG.JOE’. This can

be done using the code: userInput = userInput.toUppercase();

2. When comparing a String variable in a conditional statement the .equals()method should be used.

 if(userInput == “BORG.JOE”){}will not work because a String variable cannot be

compared using ==.

 The correct version is: if(userInput.equals(“BORG.JOE”)){}

3. To display the date:

a. the library java.util.Date needs to be imported

b. an instance of class Date should be created: Date myDate = new Date();

c. display the date: System.out.println(myDate.toString());

Task 2 – Mastermind (100 minutes)

Mastermind is a code-breaking game invented in 1970 by Mordecai Meirowitz, an Israeli

postmaster and telecommunications expert.

In this version of MASTERMIND, the computer has the role of codemaker and the player

that of codebreaker. The codemaker randomises a pattern of four coloured pins from six

available colours. This colour pattern is hidden from the codebreaker. The colour pattern

can contain colour duplicates; for instance, the pattern could be four of the same colour!

The available colours are:

BLUE – GREEN – PURPLE – RED - YELLOW - fWHITEf

The codebreaker tries to guess the pattern, in both order and colour, within ten turns. With

every guess the codemaker provides feedback by displaying the number of correct

coloured pins guessed and the number of correct pin positions, as shown in the examples

below:

Example 1

Example 2

Code RED BLUE PURPLE BLUE WHITE BLUE YELLOW RED

User Guess RED WHITE BLUE BLUE RED RED GREEN YELLOW

Feedback
Pins Guessed: 3

Correct Pin Positions: 2

Pins Guessed: 2

Correct Pin Positions: 0

Program Rules:

▪ The codemaker randomises a pattern of four coloured pins from the six available

colours. The generated code can contain pins of the same colour.

▪ The codebreaker has ten chances to guess the pattern correctly.

▪ With every guess, the codemaker provides proper feedback; i.e. number of correct

pins guessed and number of correct positions.

▪ During the game proper indication of the player’s number of chances should be

displayed. See sample interface below.

▪ The codebreaker wins if the pattern is guessed without losing all ten chances.

▪ The codemaker wins if the codebreaker loses all ten chances without guessing the

code successfully. In this case the generated colour code will be displayed.

Assessment Rubric

Screenshot: Sample Interface

Program

Functionality
User Friendly

Interface
Code

Efficiency

Use of

In-line Text

(Comments)

Use of Proper

Conventions
(Camel Case, variable

names etc.)

Name of

Folder &

Class/es

User

Input
Suitable

Messages

displayed

Proper

Randomisation

(Colour Pattern)

Proper

Validation of

the User’s input
(Colours chosen)

Ignoring Case

Sensitivity
(when guessing

colours)

Proper Use of

Data

Structure
(such as ARRAYS)

Other Features
(not listed in the

task)

Maximum Score: 24 + 2

for every extra feature

0 – Not Satisfactorily | 1- Partly

Satisfactorily | 2- Entirely Satisfactorily

Name the class containing the main method RunApp2

Submit your program in a folder called TASK1_INDEXNUM

e.g. TASK2_0025 or TASK2_0004

