

TASKS INFO

BOOKLET

Powered by

- 1 -

Contest Schedule

Start End Analysis Task Submit Break

09:00 09:05 Task 1

P
H

A
S

E
 1

 09:05 09:25 Task 1

09:25 09:30 Task 1

09:30 09:35 Task 2

09:35 10:20 Task 2

10:20 10:25 Task 2

10:25 10:40 Break 1

10:40 10:45 Task 3

P
H

A
S

E
 2

10:45 11:45 Task 3

11:45 11:50 Task 3

11:50 12:10 Break 2

12:10 12:15 Task 4

P
H

A
S

E
 3

12:15 13:30 Task 4

13:30 13:45 Task 4

Powered by

- 2 -

Task 1 – Automated Teller Machines (20 minutes)

Automated teller machines (ATM) require the user to enter a PIN Number to access the

bank card. Write a program that simulates this part of the ATM program.

The program should ask the user to enter a four-numbered PIN code. If it matches the PIN

code assigned to the Bank Card, it displays “CORRECT PIN”; otherwise it displays “INCORRECT

PIN”. The program should warn the user that the ATM will hold the bank card by displaying

“BANK CARD HELD” upon entering the wrong PIN code for three (3) consecutive times.

Program Rules:

▪ PIN assigned to Bank Card is a constant value - 9681.

▪ If the PIN code entered does not match the proper format (not a 4-numbered pin),

the program displays “INVALID PIN FORMAT” and does not count the entry as an

incorrect PIN.

▪ It is assumed that only numbers are entered by the user since only numpads are

usually available on ATMs

Name the class containing the main method RunApp1

Submit your program in a folder called TASK1_INDEXNUM

e.g. TASK1_0025 or TASK1_0004

Powered by

- 3 -

Task 2 – Nuclear Power Plant Access Area (45 minutes)

A scientist can access the Nuclear Powerplant lab by going through a three-tiered validation

protocol as in the diagram below:

Step 1: Addition

The scientist must answer correctly a randomly generated addition problem with two

numbers. The values to be randomised are between 0 and 9; e.g. 3+7 = ? where 3 and 7 are

randomly generated.

Step 2: Question

The scientist must answer correctly a multiple-choice-answer question which is

randomised from a list of three pre-set questions. The pre-set questions & answers are

listed below (pg. 4); the correct answers are enclosed in a blue box.

Powered by

- 4 -

Pre-set Questions

Question 1:

Which element is used as fuel in a nuclear power stations?

A: Water B: Gas C: Uranium

Question 2:

Which country uses the most nuclear power?

A: The United States B: Russia C: France

Question 3:

Which country opened the first nuclear power plant in 1954 known as ‘Atom Mirny’?

A: North Korea B: The Soviet Union C: Japan

Step 3: PIN Code

The scientist must enter a four-numbered PIN Code which is the constant value 6502.

Log-In Access Flow

From one validation step to another the program will not provide any feedback to the

scientist. At the end of the validation process, the scientist will be granted or denied access

to the lab by displaying a message accordingly.

Hint:
To ignore case sensitivity of the user’s answer (char) of the question displayed, the user input can be changed

into its uppercase equivalent. For example, if the user enters character ‘b’, it can be changed to character ‘B’.

This can be done using the code: userInput = Character.toUpperCase(userInput);

Name the class containing the main method RunApp2

Submit your program in a folder called TASK2_INDEXNUM

e.g. TASK2_0025 or TASK2_0004

Powered by

- 5 -

Task 3 – App Log-In (1 hour)

Nowadays, most apps require an

authentication process for various reasons,

of which security is one important aspect

and personalising the user’s experience is

another.

Write a program which asks the user to

enter the username and the password to

gain access to the app. The app’s database

is populated in arrays with the following five

(5) usernames:

Username Password
Name the class containing the

main method RunApp3

Submit your program in a folder

called TASK3_INDEXNUM

e.g. TASK3_0025 or TASK3_0004

matik_10 Matik.hello

gta_guru gta!98

borgsteve app_in?

alan_1979 mt”ALAN”

dieselmt rock!N?Roll

Program Rules:

▪ If the username entered is not found, it displays “Username does not exist”.

▪ If the username is found but the password entered is not correct, it displays

“Incorrect Password”.

▪ If the username is found & password is correct, it displays “Logged-In Successfully”.

▪ The username IS NOT case sensitive, and the password IS case sensitive.

Hint:
1. To ignore case sensitivity of the username (String), the user’s input can be changed into its uppercase equivalent.

For example, if the user enters username ‘borgjoe’, it can be changed to ‘BORGJOE’. This can be done using the

code: userInput = userInput.toUppercase();

2. When comparing a String variable in a conditional statement the .equals() method of the String class should be

used. For example: if(userInput == “BORGJOE”){}will not work because a String variable

cannot be compared using ==. The correct version is: if(userInput.equals(“BORGJOE”)){}

Powered by

- 6 -

Task 4 – Snakes & Ladders (1 hour 15 minutes)

Snakes and Ladders is an ancient Indian board game regarded today as a worldwide classic.

It is played between two or more players on a gameboard having numbered, gridded

squares starting from 1 to 100. Many "ladders" and "snakes" are pictured on the board,

each connecting two specific board squares as shown in the diagram below. The objective

of the game is to navigate, according to die rolls, from the start (Step 1) to the finish (Step

100), helped or hindered by ladders and snakes respectively.

The game is a simple race contest based on sheer luck. The historic version had roots in

morality lessons, where a player's progression up the board represented a life journey

complicated by virtues (ladders) and vices (snakes).

Powered by

- 7 -

Program Rules:

▪ The game must be played in TWO (2) players mode.

▪ Players’ name must be entered before the game starts.

▪ Player 1 starts playing and player 2 follows until one of the players

reaches step 100.

▪ When one of the players reaches step 100, the program displays the

name of the winner.

▪ Player 1 can roll the dice by pressing ‘ X ’.

▪ Player 2 can roll the dice by pressing ‘ Z ’.

▪ The dice provides a random number from 1 to 6.

▪ If the dice gets the maximum value (6), the player HAS AN EXTRA CHANCE

to play before the other player continues.

▪ If the player lands on a step that contains a ladder or a snake, THE

PLAYER’S POSITION WILL CHANGE according to the diagram on page 6,

or as simplified in the table below.

▪ During the game PROPER INDICATIONS of the players’ status should be

displayed.

Player’s

Position Element

New

Position

Player’s

Position Element

New

Position

4 Ladder 14 63 Ladder 81

9 Ladder 31 64 Snake 60

17 Snake 7 71 Ladder 91

20 Ladder 38 87 Snake 24

28 Ladder 84 93 Snake 73

40 Ladder 59 95 Snake 75

54 Snake 34 99 Snake 78

62 Snake 18

Name the class containing the main method RunApp4

Submit your program in a folder called TASK4_INDEXNUM

e.g. TASK4_0025 or TASK4_0004

Powered by

- 8 -

Assessment Rubric

TASK 1: ATM

Program

Functionality

User Friendly

Interface

Code

Efficiency

Proper use of

In-line Text

(Comments)

Use of proper

Conventions

Name of

Folder & Class/es

Constant

Declaration &

Initialisation

User

Input

Suitable

Prompts/Messages

displayed

Validation of

PIN Code

(4 Digits only)

Extra Features

(not listed

in the task)

0 – Not Satisfactorily | 1- Partly Satisfactorily | 2- Entirely Satisfactorily

Maximum Score: 20 + 2 for every extra feature

TASK 2: Nuclear Powerplant Access Area

Program

Functionality

User Friendly

Interface

Code

Efficiency

Proper use of

In-line Text

(Comments)

Use of proper

Conventions

Name of

Folder & Class/es

Constant

Declaration &

Initialisation

User

Input

Suitable

Prompts/Messages

displayed

Proper

Randomisation of

Addition Problem

Proper

Randomisation of

Questions

Proper Validation

of User’s Answer

(A, B or C only)

Proper Validation

of PIN Code

(4 Digits Only)

Extra Features

(not listed

in the task)

0 – Not Satisfactorily | 1- Partly Satisfactorily | 2- Entirely Satisfactorily

Maximum Score: 26 + 2 for every extra feature

Powered by

- 9 -

TASK 3: App Login Feature

Program

Functionality

User Friendly

Interface

Code

Efficiency

Proper use of

In-line Text

(Comments)

Use of proper

Conventions

Name of

Folder & Class/es

Arrays Declaration

& Initialisation

User

Input

Suitable

Prompts/Messages

displayed

Ignoring Case

Sensitivity for

Username

Other Features

(not listed

in the task)

0 – Not Satisfactorily | 1- Partly Satisfactorily | 2- Entirely Satisfactorily

Maximum Score: 20 + 2 for every extra feature

TASK 4: Snakes & Ladders

Program

Functionality

User Friendly

Interface

Code

Efficiency

Proper use of

In-line Text

(Comments)

Use of Proper

Conventions

Name of

Folder & Class/es

User

Input

Suitable

Prompts/Messages

displayed

Proper

Randomisation of

the dice

Proper Validation

of the User’s input

to roll the dice

(X or Z only)

Ignoring Case

Sensitivity for

User’s Input to Roll

the Dice

Other Features

(not listed

in the task)

0 – Not Satisfactorily | 1- Partly Satisfactorily | 2- Entirely Satisfactorily

Maximum Score: 22 + 2 for every extra feature

