

Qualifiers Round Schedule

Task 1 Analysis (10 min)

Task 1 Development (40 min)

Task 1 Submission (5 min)

Interval (30 min)

Task 2 Analysis (10 min)

Task 2 Development (50 min)

Task 2 Submission (5 min)

FINALISTS ARE ANNOUNCED!

RIU (40 minutes)

The Rapid Intervention Unit (RIU) is a specialised section of the Malta Police Force. The

main objective of the RIU is to have a stronger police presence on the roads.

Whenever a police constable needs to run checks on a certain car, a call is made to the

police headquarters. The responder finds the car’s number plate on the police system and

informs the constable about the name of the car owner and whether the car owner has a

valid license and is wanted by the police or not.

This process takes up precious time and often causes delays when quick decisions need to

be taken. Therefore, an app needs to be developed and installed on the system in the police

car, which lets the user input a number plate and outputs:

- the driver’s name, and

- “License not up to date”, if the driver’s license is not paid, and/or

- “Driver wanted - ARREST”, if the driver is wanted, or

- “Driver is clear”, if the driver’s license is paid and he/she is not wanted, or

- “Number plate not registered”, if the number plate is not found, or

- “INVALID Number Plate”, if the number plate is not three letters followed by three

numbers (XXX000)

The app’s database should be populated with the following five (5) sets of data:

NUMBER PLATE CAR OWNER LICENSE WANTED

BOB111 Robert Zarb Paid YES

WIZ238 Carl Attard Paid NO

XIK764 Jane Schembri Not Paid NO

BIL888 Kenneth Refalo Paid NO

BON007 Benji Borg Paid YES

Name the class containing the main method RunApp1.

Submit your program in a folder named RIU

Assessment Rubric

Program

Functionality

User-Friendly

Interface

Proper use of

Comments

Proper

Conventions
(Camel case,

meaningful var

names etc.)

Name of

Folder &

Class/es

User

Input

Suitable

Prompts /

Messages

displayed

Proper use

of Data

Structures

Input

Validation
(Number Plate)

Other

Features

(Not listed

in the task)

Maximum Score: 20
+ 2 for every extra feature.

0 – Not Satisfactorily | 1- Partly Satisfactorily | 2- Entirely Satisfactorily

21 Sticks Game (50 minutes)

21-Sticks is a variant of the popular strategy game called ‘Nim’. Nim dates to at least the

1500s and possibly earlier. It’s very similar to an ancient Chinese game using only two piles

of stones called Tsyan-shizi (Picking Stones).

The game play is very simple: two players take turns removing matchsticks from a pile of

21 sticks. The loser is the person who is forced to take the last matchstick.

Develop a program that simulates this game according to the functionalities below:

Functionality #1 – Establishing players

1. Player 1 enters player name.

2. Player 2 enters player name.

Functionality #2 – Gameplay

1. The game starts by showing the number of sticks. Sticks are represented in a series of ‘*’.

2. Either Player 1 or Player 2 starts the game; choice of player must be randomised.

3. Players take turn by eliminating only one or two sticks at a time.

4. With each player’s turn, the number of remaining stick must be shown in a series of ‘*’.

5. The player who eliminates the last matchstick loses.

6. The game displays the name of the winner.

* A sample screen shot is shown in Figure 1.

Validation Required

- Players cannot have the same name.

- Players can input only 1 or 2 during game play.

- Avoid runtime error if the player enters a character instead of a number during gamplay.

* Proper messages are displayed if players’ input does not abide by the validation rules.

Figure 1: Sample screenshot during gameplay

Name the class containing the

main method RunApp2.

Submit your program in a

folder named sticksGame

Assessment Rubric

Program

Functionality

User-

Friendly

Interface

Proper

use of

Comments

Proper

Conventions
(Camel case,

meaningful var

names etc.)

Name of

Folder &

Class/es

User

Input

Suitable

Prompts /

Messages

displayed

Randomisation
(Initial Player)

Validation
(Player Names)

Validation
(Elimination of

sticks)

Code

Efficiency
(avoid duplicate

lines of code)

Other

Features

(Not listed

in the task)

Maximum Score: 24

+ 2 for every extra

feature.

0 – Not Satisfactorily | 1- Partly Satisfactorily | 2- Entirely Satisfactorily

