

code.sprintmt - Open Category Task Booklet

2025 Page 1 of 12

SmartSave – Personalised Savings Assistant

Hello!

Welcome to the code.sprintmt 2025 competition. Today you’ll be flexing your coding,

infrastructure and UI/UX design muscles to create a practical lab learning environment.

1. Design Brief

One of the biggest parts of ‘adulting’ is managing your money. In today’s world, inflation and a

barrage of subscription services make it hard to determine exactly where your salary ends up

each month. The goal of SmartSave is to create a dashboard for the average person to be able

to gain insights into their expenses each month.

SmartSave should help users to develop good spending habits by offering personalized advice,

based either on rules, AI or, ideally, a combination of both.

Your challenge is to create a digital assistant that provides tailored savings insights using mock

financial data and smart logic.

code.sprintmt - Open Category Task Booklet

2025 Page 2 of 12

Since you only have a day, the app you will be building will be a prototype / proof-of-concept.

Below is a table of functionality prioritized using the MoSCoW method.

Must Have

Functionality Notes
M1 Dashboard Interface

M1.1 Present a clear view of a user’s past three months of expenses. You have

been provided with mock data for this.

M1.2 Categorise spending into buckets (e.g. food, rent, transport, subscriptions).

M1.3 Visualising spending (including trends) using charts/graphs.

M2 Savings Goal Engine

M2.1 Allow users to set one or more savings goals (e.g. vacation, emergency

funds).

M2.2 Automatically suggest how much a user could save per month, based on

their spending patterns.

M2.3 Provide a recommendation engine that suggest areas to cut back on (e.g.

“Reducing your delivery food spend by 15% could save you €100/month”).

Should Have

Functionality Notes
S1 Intelligent Alerts

S1.1 A basic rule engine to simulate alerts (e.g. “You’ve spent 80% of your good

budget this month!”).

S2 Natural-Language Assistant

S2.1 Use a chatbot (or any other natural-language interface) for user interaction,

allowing the user to ask questions about their spending patterns and data.

Could Have

Functionality Notes
C1 Browser Extension

C1.1 A browser extension (for Chrome-based, Gecko-based or WebKit-based

browsers). This extension should provide alerts when new transactions are

recorded. Notifications can be triggered manually for the purposes of this

prototype.

C2 WhatsApp Integration

C2.1 Build a WhatsApp integration which sends push notifications to the user’s

WhatsApp account. Notifications can be triggered manually for the

purposes of this prototype.

Won’t Have

We recommend you do not attempt the following, due to time constraints and complexity:

1. Actual integration with an OpenBanking API (even a mock one). This often involve

complex oAuth2 flows which are overkill for a prototype.

2. Publication of a browser extension to a store. This requires verification and,

depending on browser, payment – which is not required for this competition.

code.sprintmt - Open Category Task Booklet

2025 Page 3 of 12

2. Technical Guidelines

The method you choose to implement the app is up to you. However, the following technical

guidelines are intended to help ensure you stay on the right track.

2.1 Sample Data
Sample transaction data has been created for you to source. You can find it below:

https://codesprint25.s3.eu-central-

1.amazonaws.com/codesprint_open_2025_sample_data.csv

2.2 Reference Implementation

The judging panel has created a reference implementation of this app in one working day.

This is to ensure that the task given is possible within the timeframe allocated. A video of this

app in operation is available below. We highly recommend that you watch this video carefully,

to get an idea of the functionality and level of polish the judging panel is expecting.

https://icepublicvids.s3.eu-south-1.amazonaws.com/SmartSave.mp4

2.3 Platform

Your app can run on any platform you choose (Windows, macOS, Linux, iOS, Android, Web).

We suggest creating a web application to reduce the barrier of entry for users (as well as

simplicity!) however this is ultimately up to you.

2.4 Development Environment

You are free to use ANY programming language you wish to create your solution. However,

do remember that the solution must run on the judge’s computers, and that you must provide

both a binary/executable solution, as well as source code.

2.5 Tips

Here are a few tips and resources to consider.

• Due to time constraints, you may want to seriously consider building a simple web

application for this proof-of-concept, rather than a mobile or desktop application.

• Use of AI assistance in coding is not only accepted, but encouraged. However, as

with any AI, do check the results of your prompts for functionality, correctness and

security. You will be required to explain random sections of your code during your

project VIVA.

https://codesprint25.s3.eu-central-1.amazonaws.com/codesprint_open_2025_sample_data.csv
https://codesprint25.s3.eu-central-1.amazonaws.com/codesprint_open_2025_sample_data.csv
https://icepublicvids.s3.eu-south-1.amazonaws.com/SmartSave.mp4

code.sprintmt - Open Category Task Booklet

2025 Page 4 of 12

2.6 Resources

Rendering Charts & Graphs

• On the web: https://www.chartjs.org/docs/latest/

• Android:

o https://github.com/ehsannarmani/ComposeCharts

o https://github.com/PhilJay/MPAndroidChart

• iOS: https://developer.apple.com/documentation/charts

Interacting with a REST API

• https://restfulapi.net

• https://www.youtube.com/watch?v=Q-BpqyOT3a8

LLM APIs

• OpenAI: https://platform.openai.com/docs/overview

• Microsoft Copilot: https://learn.microsoft.com/en-us/microsoft-365-

copilot/extensibility/copilot-apis-overview

• Anthropic Claude: https://www.anthropic.com/api

• Google Gemini: https://ai.google.dev

Open Banking API

Note: for the purposes of this task, you do not need to learn the Open Banking API! You

will however need to mock an end point for basic, read-only use. Implementing an oAuth2

authentication flow is similarly not required.

• Mock bank (free to use): https://www.mockbank.io.

Also check out their documentation at:

https://jrholding.atlassian.net/wiki/spaces/MPD/pages/685670401/Introduction+to

+MockBank

• Mocking an API:

o https://designer.mocky.io

o https://github.com/typicode/json-server

https://www.chartjs.org/docs/latest/
https://github.com/ehsannarmani/ComposeCharts
https://github.com/PhilJay/MPAndroidChart
https://developer.apple.com/documentation/charts
https://restfulapi.net/
https://www.youtube.com/watch?v=Q-BpqyOT3a8
https://platform.openai.com/docs/overview
https://learn.microsoft.com/en-us/microsoft-365-copilot/extensibility/copilot-apis-overview
https://learn.microsoft.com/en-us/microsoft-365-copilot/extensibility/copilot-apis-overview
https://www.anthropic.com/api
https://ai.google.dev/
https://www.mockbank.io/
https://jrholding.atlassian.net/wiki/spaces/MPD/pages/685670401/Introduction+to+MockBank
https://jrholding.atlassian.net/wiki/spaces/MPD/pages/685670401/Introduction+to+MockBank
https://designer.mocky.io/
https://github.com/typicode/json-server

code.sprintmt - Open Category Task Booklet

2025 Page 5 of 12

Browser Extension Development

• Chrome-based: https://developer.chrome.com/docs/extensions/

• Firefox (Gecko)-based: https://extensionworkshop.com

• Safari (WebKit)-based:

https://developer.apple.com/documentation/safariservices/safari-web-extensions

Creating a WhatsApp Integration

• https://developers.facebook.com/docs/whatsapp/

• https://www.youtube.com/watch?v=4cvQxqFZTIQ

• https://medium.com/%40ammarbinshakir557/whatsapp-api-integration-with-

node-js-f915cad3cc3b

2.7 Name

SmartSave is a sample name – you are free to call your app whatever you want J

https://developer.chrome.com/docs/extensions/
https://extensionworkshop.com/
https://developer.apple.com/documentation/safariservices/safari-web-extensions
https://developers.facebook.com/docs/whatsapp/
https://www.youtube.com/watch?v=4cvQxqFZTIQ
https://medium.com/%40ammarbinshakir557/whatsapp-api-integration-with-node-js-f915cad3cc3b
https://medium.com/%40ammarbinshakir557/whatsapp-api-integration-with-node-js-f915cad3cc3b

code.sprintmt - Open Category Task Booklet

2025 Page 6 of 12

3. Judgement Criteria

Your submission will be given a maximum of 210 points. The criteria by which points are

awarded are detailed below. Note that you do not need to achieve all the criteria, however,

the more criteria you achieve, the greater your chances of winning! The numbers in [brackets]

refer to the functionality in the design brief.

Criterion Notes Maximum

Points

Core Functionality
[M1.1] Expense Viewing The user should be able to view their past three months of

expenses. This should be presented in a sortable and ideally,

searchable, form.

10

[M1.2] Spending Categorisation Provided with the mock data, the application should

automatically categorise spending into ‘buckets’ such as

food, rent, transport etc…

20

[M1.3] Spend Visualisation Spending should be visualised. At a bare minimum, a pie chart

showing spend categorised by bucket and a graph showing

spending trends by month should be provided.

15

[M2.1] Savings Goals Users should be able to set savings goals (e.g. vacation,

emergency funds). Users can then deposit funds into these

virtual spaces, with the system tracking amount left to target.

15

[M2.2] Saving Suggestion The system should display an automated suggestion showing

how much (in total) the user can save per month, based on

their savings patterns.

15

[M2.3] Recommendation Engine Provide a recommendation engine that suggests areas to cut

back on (e.g. “Reducing your delivery food spend by 15%

could save you €100/month).

15

UI/UX
Neat/Aesthetically pleasant user

interface

Rather than ‘flair’, we are looking for a neat, organized and

functional UI
10

App is easy to use The user should not need a manual to use the app 5

Responsiveness The app should be usable on different screen sizes. 10

Code Quality
Code is organized into

packages/modules/units etc.

5

Separation between presentation and

logic layers

For example, using a REST API model
10

Consistent and correct use of a

programming paradigm

Such as OOP, AOP, functional etc.
5

Function cohesion Functions should be kept small, and do one thing, without

being too dependent on other functions
5

Inline documentation i.e. comments 5

Maintainable code Ex: use of abstract classes, interfaces, function prototypes

etc. Depending on the programming paradigm chosen
5

Additional Functionality/Features
[S1.1] Alerts A basic rule engine to simulate alerts (e.g. You’ve spent 80%

of your food budget this month).
10

[S2.1] Natural Language Assistant Using a natural-language interface to allow user interaction

with their data.
20

[C1.1] Browser Extension A browser extension to provide spending alerts. 15

[C2.1] WhatsApp Integration WhatsApp integration to provide spending alerts. 15

Additional features Additional features not present in these requirements will be

graded up to a maximum of 15 marks.

code.sprintmt - Open Category Task Booklet

2025 Page 7 of 12

Submission Criteria

At the end of the time allocated to this competition, you must submit your code to the judging

panel. The code, including all assets and other resources, must be submitted as a folder or

compressed archive.

You will also be required to demonstrate your application running.

code.sprintmt - Open Category Task Booklet

2025 Page 8 of 12

NOTES

code.sprintmt - Open Category Task Booklet

2025 Page 9 of 12

code.sprintmt - Open Category Task Booklet

2025 Page 10 of 12

