
Post-Secondary Competition 2025

Powered by

Final

Round

Final Round Schedule

Task Analysis (10 min)

Task Development (90 min)

Interval (15 min)

Continuation of Task Development (90 min)

Task Submission (5 min)

Top 3 announced during the Award Ceremony

- 2 -

BusIt Malta – Track – Connect - Transfer!

In the bustling island of Malta, thousands of daily commuters, locals, and tourists rely on an efficient

public transport system. The Malta Public Transport is investing in a next-generation solution called

BusIt Malta, and you are the lead developer!

Your job is to develop a simulation of a bus route management system using Java. The system

must allow adding new bus routes, searching for bus routes, searching routes by bus stops,

finding transfer stops, and planning journeys, all using a user-friendly interface. You must apply

good Object-Oriented Programming (OOP) practices, exception handling, and use appropriate

data structures such as Arrays, ArrayLists or HashMaps.

Functionality #1: User Interface.

Create an interface with the following options:

=== BusIt Menu ===

1. Add a new bus route

2. Search for bus route by route code

3. Search for bus route/s by bus stop

4. Find transfer stops between two routes

5. Journey Planner (From ➡ To)

6. Exit

 The program will stop only if the user chooses option 6.

 On every operation, the system should provide access to the relevant function and provide

meaningful feedback or error messages.

- 3 -

Functionality #2: Predefined bus routes

The system should initialize with a few preloaded bus routes, as shown in Table 1 below. These

routes must be loaded from a file when the program starts. The source of the data can be any

file type of your choice, such as text file, object file, CSV file, JSON file, etc.

 For convenience, a sample text file named routes.txt is provided and can be downloaded

from www.codesprintmalta.edu.mt/routes.txt. This text file contains the predefined routes in

CSV format.

Bus Route Journey (Bus stops in sequence)

R001

Triton Fountain, City Gate, Upper Barrakka, Kastilja, Konkatidral,

Republic Street, Mediterranean Conference Centre, Lower Barrakka,

Waterfront, Park & Ride, Triton Fountain

R003 Valletta, Floriana, Hamrun, Santa Venera, Birkirkara, Iklin, Naxxar, Mosta

R037 Valletta, Floriana, Pieta, Msida, University, Mater Dei Hospital

R041 Valletta, Floriana, Marsa, Paola, Fgura, Zabbar, Kottonera

R045
Valletta, Floriana, Msida, Birkirkara, Balzan, Attard, Ta Qali, Rabat, Mdina,

Dingli

R072 Marsa, Hamrun, Qormi, Luqa, Zebbug, Siggiewi, Ghar-Lapsi

R081 Paola, Tarxien, Gudja, Luqa, Kirkop, Zurrieq, Hal Far, Birzebbuga

R084 Fgura, Bormla, Birgu, Senglea, Zabbar, Marsascala, Xghajra

R201
Luqa, Airport, Mqabba, Qrendi, Blue Grotto, Hagar Qim, Siggiewi, Rabat,

Mtarfa

R212 Msida, Gzira, Sliema, St Julian, Pembroke, Swieqi, Bahar ic-Caghaq, Bugibba

R218 Bugibba, Qawra, St Pauls Bay, Xemxija, Mellieha, Cirkewwa

R223 Cirkewwa, Mellieha, Ghadira, Golden Bay, Mgarr, St Pauls Bay

Table 1: Predefined Bus Routes

http://www.codesprintmalta.edu.mt/routes.txt

- 4 -

Functionality #3: Add new bus route

1. This is a password-protected feature, accessible only with the password LetMe!n

2. The interface must allow the user to add a new bus route by entering a:

− route code, such as R101, and

− comma-separated list of bus stops in order, such as: Valletta, Floriana, Msida,

Birkirkara, Mosta

3. The bus routes should start with the uppercase letter ‘R’ and followed by a three-digit

number.

4. The system should not allow bus routes with the same route code.

5. Each bus route cannot have a duplicate bus stop.

6. No two bus routes should have the exact same sequence of bus stops. Each bus route must

be unique! For example, Marsa → Hamrun → Mosta, and Mosta → Marsa → Hamrun are

considered as two (2) unique routes.

7. Any newly added bus routes should be saved to the file that contains the predefined routes.

This can be the provided routes.txt file or any other file format of your choice.

8. Return to BusIT Main Menu if password is incorrect, or bus route is invalid or not unique.

Screenshot 1: Sample interface for Functionality 3

Screenshot 2: Another sample interface for Functionality 3

Screenshot 3: Another sample interface for Functionality 3

- 5 -

Functionality #4: Search for bus routes by route code

This feature should support:

1. Searching for a bus route and, if found, display all its stops.

2. The search must perform an exact match, no partial matches!

3. Display an appropriate message if the bus route is not found.

4. Display an appropriate message if an invalid bus route is entered.

5. If the user types in the word ‘all’, the system should display all the bus routes and their

stops in numerical order; for example, R301 comes after R288.

Screenshot 4: Sample interface for Functionality 4

Screenshot 5: Another sample interface for Functionality 4

Screenshot 6: Another sample interface for Functionality 4

- 6 -

Functionality #5: Search routes by bus stop

This feature should support:

1. Searching for a bus stop to identify all routes passing through it in numerical order.

2. Display an appropriate message if a bus route is not found.

Screenshot 7: Sample interface for Functionality 5

Screenshot 8: Another sample interface for Functionality 5

Functionality #6: Find transfer stops between two routes

This feature should help users identify transfer points by finding common stops between two

routes.

1. The user should enter two bus routes, and the system displays the common stops in

alphabetical order.

2. Display an appropriate message if any one of the bus routes is not found.

3. Display an appropriate message if any one of the bus routes is invalid.

4. Display an appropriate message if bus routes are the same.

Screenshot 9: Sample interface for Functionality 6

- 7 -

Functionality #7: From → To Journey Planner

This feature helps users identify the best bus route/s to reach their destination bus stop.

1. The user should enter the 'From' and 'To' bus stops. The system should then display all

available bus route/s.

2. The results must include all the possible options, including ‘Direct’ routes and ‘Transfer’

routes, such as:

o From Floriana ▶ To Iklin: Direct Route R003.

o From Valletta ▶ To Mellieha: Transfer Route: R037 → Transfer to R212 at Msida →

Transfer to R218 at Bugibba.

3. Routes should only include journeys where the 'From' bus stop comes before the 'To' bus

stop along the route. For example, a route from Marsa to Valletta would not exist if the bus

travels from Valletta to Marsa.

4. For each suggested bus route, generate a random time between 5 and 15 minutes to

simulate the arrival time at the initial bus stop.

5. If there are multiple journey options, the system should display all available options in

sequence, ordered by the earliest arrival time at the starting bus stop.

6. Display an appropriate message if either the 'From' or 'To' bus stop is not found.

7. Display an appropriate message if no route options are available.

Screenshot 10: Sample interface for Functionality 7

Screenshot 11: Another sample interface for Functionality 7

Screenshot 12: Another sample interface for Functionality 7

- 8 -

Screenshot 13: Another sample interface for Functionality 7

Functionality #8: Validation Processes

In addition to the validation processes mentioned in the previous features, your program must

implement the following validations:

1. Empty user input should be ignored and not treated as invalid. The program should re-

prompt the user to enter the requested data/option.

2. All user inputs should be case-insensitive to improve usability and prevent errors due to

case mismatches.

3. Prevent any runtime errors due to invalid user actions.

Functionality #9: Modular Programming

− Structure your code using modular and object-oriented structure, using appropriate

classes, methods, and Java conventions.

− Use ArrayLists, HashMaps, and/or HashSets where appropriate.

− Include Java naming conventions, indent and space your code consistently, and use

comments when required.

Name the class containing the main method ‘RunApp’.

Name the file containing the Bus Routes ‘routes’,

such as routes.txt, or routes.json, or routes.csv, or routes.obj, etc.

Submit your program in a folder named BusIT_name_surname

such as BusIT_john_abela

- 9 -

Assessment Rubric

Program

Runs

User

Friendly /Experience

Interface

Proper use of

Comments

Proper Conventions
(Camel Case, meaningful

var names etc.)

User

Input

Suitable

Prompts /

Messages displayed

Name of Folder &

Class/es

Adding

Bus Routes

Search

Bus Route

Display ‘ALL’

Bus Routes

Search for Route/s

by Bus Stop

Find

Transfer Stops

Between Two

Routes

To/From

Available

Direct Routes

To/From

Available

Transfer Routes

Load Pre-set

Bus Routes

from File

Save New

Bus Routes

in File

Sorting Displayed

Routes in

Numerical Order

Sorting Displayed

To/From Routes

by Arrival Time

Generating

Random Arrival

Time

Password Protected

Feature

Proper use of

Data Structures

Modular

Code

Code

Efficiency

Other

Functions / Flow

Validations

Main Menu Options
Valid

Route Codes

Route Code

Already Exists
(Adding new Routes)

Non-Duplicate

Bus Stops in

Sequence
(Adding new Routes)

Unique

Route Code
(Adding new Routes)

Validations

Same

Route Codes
(Finding Transfer Stops)

Ignore

Empty Input

Avoid

Runtime Errors

User Input

Case Sensitivity

Maximum Score: 66 + 2 for every extra feature

0 – Not Satisfactorily | 1- Partly Satisfactorily | 2- Entirely Satisfactorily

POWERED BY TOP BRANDS

ORGANISED BY

MAIN TITLE SPONSORS

MEDIA PARTNERS

SUPPORTING SPONSORS

COMMUNITY & EXPERIENCE SPONSORS

